Lesson 1: Introduction to Digital Logic Design

Why Digital Systems?
- Accurate — depending on number of digits used
 - CD Music is digital — Vinyl Records were analog
 - DVD Video and Audio
 - mp3 (quality depends on sampling/amount of bits)
- Reliable
 - Error Correction Capabilities
 - Discrete Values with Large Noise Margin
- Technology
 - can be implemented as fast, cheap CMOS semiconductors

Numbering systems
- Western World — Decimal or base 10
 - The system that we all know and take for granted
 - 10 probably picked because of the number of fingers on human hands
- Mayans — Vigesimal or base 20
 - had concept of zero and had a modern positional notation
 - Allowed for representing a large range (very small to very large numbers)
 - positional notation allows for long arithmetic
- Computers and Digital Systems — Binary or base 2
 - easy to implement physically — high or low voltage on wire
 - allows for use of Boolean math and philosopher’s logic
 - true or false = high or low = one or zero = on or off
- Hexadecimal System — Base 16
 - Can quickly convert large binary numbers to hexadecimal and back by inspection
 - One Hexadecimal digit represents four binary digits (0 – 9, A – F)

Binary Codes, BCD — clock example
- Binary Coded Decimal (8-4-2-1 weighted code)
 - used with simple LED displays (watch display, etc)

Sample Problems 1 – 5 min
- Convert 1000.012 to decimal
- Convert 10110011102 to Hex
- Convert 25.2510 to binary

Lesson 1-b: Logic Gates
Basic Operations - Inverter

- Inversion operation (AKA the complement)
 - operation performed on only single variable
 - indicated by a prime (') or overbar – (prime is easier to use)
 - the inversion of 1 is 0 and the inversion of 0 is 1
 - inverter consists of two transistors in CMOS (don’t need to know this for test)

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Basic Operations – Logical AND

- AND function
 - operation performed on two or more boolean variables
 - output is one if and only if both inputs are one
 - indicated by a multiplication symbol (although not multiplication)
 - “*” can be used, or
 - two adjacent variables are assumed to be ANDed

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic Operations – Logical OR

- OR function
 - operation performed on two or more boolean variables
 - output is one if either or both of the inputs is one
 - indicated by a addition symbol (although not addition)
 - “+” can be used

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sample Problems 2 – 5 min

- Convert a NAND gate into an INVERTER
 - Hint: no gates necessary

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive Or Logic gate

\[X \oplus Y = X \cdot Y' + X' \cdot Y \]
Exclusive NOR Logic gate (XNOR)

\[X \equiv Y = X \land Y + X' \land Y' = (X \oplus Y)' \]

A B Z
\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}

Also known as an Equivalence Operation or Bit Compare

Sample Problem 3 – 5 min
- Convert a XOR gate into an INVERTER
- Hint: no gates necessary

A B Z
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}

Sample Problem 4 – 5 min
- Convert a XOR gate into a BUFFER
- Hint: no gates necessary

A B Z
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}

Logic Networks

\[F(a,b,c) = a' \cdot b + a \cdot b \cdot c + b \cdot c' \]

Sample Problem 5 – 5 min
- Truth Table
- Logic Network Circuit Diagram

Truth Tables

\[F(A,B,C) = AB + C \]

\[
\begin{array}{cccccc}
A & B & C & A \cdot B & F \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Sample Problem 5 – 5 min
- 1. Truth Table
- 2. Logic Network Circuit Diagram
Lesson 1-c: Maxterms and Minterms

Design by Truth Table (based on 1’s of table)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Z = A'BC + A'BC' + ABC \]
\[Z = AB + BC \]

Minterm expansion in m-notation

\[Z = A'BC + A'BC' + ABC \]
rewritten in m-notation
\[Z(a,b,c) = m_3 + m_6 + m_7 \]

Maxterm expansion

\[Z = (a+b+c)(a+b'+c)(a'+b+c)(a'+b+c') \]
rewritten as maxterm expansion
\[Z(a,b,c) = M_0 M_1 M_4 M_5 \]

Lesson 1-d: Boolean Algebra Theorems

Theorems

- Basic Theorem:
 \[X + 0 = X \]
 \[X + 1 = X \]
- Idempotent Law:
 \[X + X = X \]
 \[X * X = X \]
- Involution Law:
 \[(X')' = X \]
- Laws of Complementarity
 \[X + X' = 1 \]
 \[X * X' = 0 \]
Theorems (2)

- **Commutative Law:**
 \[X \cdot Y = Y \cdot X \quad X + Y = Y + X \]

- **Associative Law:**
 \[X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z \quad (X + Y) + Z = X + (Y + Z) \]

- **Distributive Law:**
 \[X \cdot (Y + Z) = X \cdot Y + X \cdot Z \quad X + (Y \cdot Z) = (X + Y) \cdot (X + Z) \]

- **De Morgan's Law:**
 \[(X_1 + X_2 + X_3)' = X_1' \cdot X_2' \cdot X_3' \]
 \[(X_1 \cdot X_2 \cdot X_3)' = X_1' + X_2' + X_3' \]

Theorems (3) - Simplification

1. \[X \cdot Y + X \cdot Y' = X \]
2. \[X + X \cdot Y = X \]
3. \[(X + Y)' = X' \cdot Y' \cdot X' \cdot Y' \]

Sample Problems 6 – 5 min

\[F = A \cdot B \cdot C + C' + B' \]

\[X \cdot Y' + Y = X + Y \]

\[F = AB + C' + B' \]

Lesson 1-e: 4-bit Adder/Subtractor

Lab - Full Adder Cell

- adds three 1 bit numbers
- two numbers
- one carry-in from previous stage
- provides 1 bit sum and carry out

<table>
<thead>
<tr>
<th>A</th>
<th>B'</th>
<th>Cin</th>
<th>Sum</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Binary Addition

Addition Table

\[
\begin{array}{c|c|c|c|c|}
0 + 0 = 0, c=0 & 0 & 0 & 0 & 0 \\
0 + 1 = 1, c=0 & 0 & 1 & 1 & 0 \\
1 + 0 = 1, c=0 & 1 & 0 & 0 & 0 \\
1 + 1 = 0, c=1 & 1 & 1 & 0 & 0 \\
\end{array}
\]

But Carry One to next column

\[12_{10} + 6_{10} = 18_{10} \]
4-bit binary adder using Full adder

\[
\begin{array}{c}
\text{A3 A2 A1 A0} \\
+ \text{B3 B2 B1 B0} \\
\hline
\text{S4 S3 S2 S1 S0}
\end{array}
\]

\[
\begin{array}{c}
110 \\
+ 011 \\
\hline
1010
\end{array}
\]

- Full Adder
- Sum
- Carry
- But Carry One to next column

4-bit Binary Adder

\[
\begin{array}{c}
\text{C3} \\
\text{C2} \\
\text{C1} \\
\text{C0}
\end{array}
\]

\[
\begin{array}{c}
\text{Full Adder} \\
\text{Adder} \\
\text{Adder} \\
\text{Adder}
\end{array}
\]

Binary Subtraction

- Subtraction Table
- \(12_{10} = 1100 \)
- \(-6_{10} = 0110 \)
- \(0110 = 6_{10} \)

- But borrow One from next column

Sign and Magnitude system

- \(100110_2 = -6_{10} \)

- Sign bit 1 = -

- Magnitude (same in this case)

- \(00110_2 = 6_{10} \)

One’s complement

- \(000110_2 = 6_{10} \)
- \(111010_2 = -6_{10} \)

- Formal conversion \(\Rightarrow N' = (2^n - 1) - N \)

- Example
 \[
 \begin{array}{c}
 (2^n-1) \\
 N = 6
 \end{array}
 \]

- \(1111 \)
- \(-00110 \)
- \(11001 \)

- Simple conversion \(\Rightarrow \) flip all bits

Two’s complement

- \(000110_2 = 6_{10} \)
- \(111010_2 = -6_{10} \)

- Formal conversion \(\Rightarrow N' = N' + 1 \)

- Example
 \[
 \begin{array}{c}
 (2^n-1) \\
 N = 6
 \end{array}
 \]

- \(1111 \)
- \(-00110 \)
- \(11001 \)
- \(\text{add 1} \)
- \(+00001 \)
- \(11010 \)
Binary Subtraction

\[
12_{10} = 1100 - 6_{10} = -0110 +1010 = 0110 = 6_{10}
\]

2's Complement

\[
\begin{align*}
N &= 6 & \text{0110} \\
N' &= -0110 & \text{1001} \\
\text{add 1} &= +0001 & \text{1010}
\end{align*}
\]

- Ignore the last carry

4-bit Binary Subtractor

\[
\begin{align*}
\text{C3} &\quad \text{Full Adder} & \quad \text{B3} \quad \text{A3} \\
\text{C2} &\quad \text{Full Adder} & \quad \text{B2} \quad \text{A2} \\
\text{C1} &\quad \text{Full Adder} & \quad \text{B1} \quad \text{A1} \\
\text{C0} &\quad \text{Full Adder} & \quad \text{B0} \quad \text{A0}
\end{align*}
\]

- Ignore the last carry out

Adder/Subtractor

- Combine adder and subtractor with one control input
- Add/subtract = 1 – Adds B with A
- Add/subtract = 0 – Subtracts B from A

Hints:

- Use EX-OR Operation

<table>
<thead>
<tr>
<th>Add/Sub (S)</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Lab Instructions:

- Create new project for lab 1b
- When Adding Symbol -> use the symbol name (first lab)